Table of Contents
Boolean modules over a relation algebra
Abbreviation: BRMod
Definition
A \emph{Boolean module over a relation algebra} $\mathbf{R}$ is a structure $\mathbf{A}=\langle A,\vee,0, \wedge,1,\neg,f_r\ (r\in R)\rangle$ such that
$\langle A,\vee,0,\wedge,1,\neg\rangle$ is a Boolean algebra
$f_r$ is \emph{join-preserving}: $f_r(x\vee y)=f_r(x)\vee f_r(y)$
$f_{r\vee s}(x)=f_r(x)\vee f_s(x)$
$f_r(f_s(x))=f_{r\circ s}(x)$
$f_{1'}$ is the identity map: $f_{1'}(x)=x$
$f_0(x)=0$
$f_{r^\smile}(\neg (f_r(x)))\le \neg x$
Remark: Assuming that $f_r$ is order-preserving, the last identity is equivalent to the condition that $f_{r^\smile}$ and $f_r$ are conjugate operators. It follows that $f_r$ is \emph{normal}: $f_r(0)=0$.
Morphisms
Let $\mathbf{A}$ and $\mathbf{B}$ be Boolean modules over a realtion algebra. A morphism from $\mathbf{A}$ to $\mathbf{B}$ is a function $h:A\rightarrow B$ that is a Boolean homomorphism and preserves all $f_r$:
$h(f_r(x))=f_r(h(x))$
Examples
Example 1:
Basic results
Properties
Finite members
$\begin{array}{lr}
f(1)= &1
f(2)= &
f(3)= &
f(4)= &
f(5)= &
f(6)= &
\end{array}$