### Table of Contents

## Boolean monoids

Abbreviation: **BMon**

### Definition

A \emph{Boolean monoid} is a structure $\mathbf{A}=\langle A,\vee,0, \wedge,1,\neg,\cdot,e\rangle$ such that

$\langle A,\vee,0, \wedge,1,\neg\rangle $ is a Boolean algebra

$\langle A,\cdot,e\rangle $ is a monoids

$\cdot$ is \emph{join-preserving} in each argument: $(x\vee y)\cdot z=(x\cdot z)\vee (y\cdot z) \mbox{ and } x\cdot (y\vee z)=(x\cdot y)\vee (x\cdot z)$

$\cdot$ is \emph{normal} in each argument: $0\cdot x=0 \mbox{ and } x\cdot 0=0$

Remark:

##### Morphisms

Let $\mathbf{A}$ and $\mathbf{B}$ be Boolean monoids. A morphism from $\mathbf{A}$ to $\mathbf{B}$ is a function $h:A\rightarrow B$ that is a Boolean homomorphism and preserves $\cdot$, $e$:

$h(x\cdot y)=h(x)\cdot h(y) \mbox{ and } h(e)=e$

### Examples

Example 1:

### Basic results

### Properties

### Finite members

$\begin{array}{lr}
f(1)= &1

f(2)= &1

f(3)= &0

f(4)= &9

f(5)= &0

f(6)= &0

f(7)= &0

f(8)= &258

\end{array}$