Table of Contents
Boolean semilattices
Abbreviation: BSlat
Definition
A \emph{Boolean semilattice} is a structure $\mathbf{A}=\langle A,\vee,0, \wedge,1,\neg,\cdot\rangle$ such that
$\mathbf{A}$ is in the variety generated by complex algebras of semilattices
Let $\mathbf{S}=\langle S,\cdot\rangle$ be a semilattice. The \emph{complex algebra} of $\mathbf{S}$ is $Cm(\mathbf{S})=\langle P(S),\cup,\emptyset,\cap,S,-,\cdot\rangle$, where $\langle P(S),\cup,\emptyset, \cap,S,-\rangle$ is the Boolean algebra of subsets of $S$, and
$X\cdot Y=\{x\cdot y\mid x\in X,\ y\in Y\}$.
Morphisms
Let $\mathbf{A}$ and $\mathbf{B}$ be Boolean semilattices. A morphism from $\mathbf{A}$ to $\mathbf{B}$ is a function $h:A\rightarrow B$ that is a Boolean homomorphism and preserves $\cdot$:
$h(x\cdot y)=h(x)\cdot h(y)$
Examples
Example 1:
Basic results
Properties
Finite members
$\begin{array}{lr}
f(1)= &1
f(2)= &1
f(3)= &0
f(4)= &5
f(5)= &0
f(6)= &0
f(7)= &0
f(8)= &\ge 97\text{ out of }104
\end{array}$
Subclasses
Superclasses
References
1)\end{document} %</pre>