Table of Contents
Commutative ordered rings
Abbreviation: CORng
Definition
A \emph{commutative ordered ring} is an ordered ring $\mathbf{A}=\langle A,+,-,0,\cdot,\le\rangle$ such that
$\cdot$ is \emph{commutative}: $xy=yx$
Remark: This is a template. If you know something about this class, click on the ``Edit text of this page'' link at the bottom and fill out this page.
It is not unusual to give several (equivalent) definitions. Ideally, one of the definitions would give an irredundant axiomatization that does not refer to other classes.
Morphisms
Let $\mathbf{A}$ and $\mathbf{B}$ be … . A morphism from $\mathbf{A}$ to $\mathbf{B}$ is a function $h:A\rightarrow B$ that is a orderpreserving homomorphism: $h(x + y)=h(x) + h(y)$, $h(x \cdot y)=h(x) \cdot h(y)$, and $x\le y\Longrightarrow h(x)\le h(y)$.
Definition
A \emph{…} is a structure $\mathbf{A}=\langle A,\ldots\rangle$ of type $\langle …\rangle$ such that
$\ldots$ is …: $axiom$
$\ldots$ is …: $axiom$
Examples
Example 1:
Basic results
Properties
Feel free to add or delete properties from this list. The list below may contain properties that are not relevant to the class that is being described.
Finite members
$\begin{array}{lr}
f(1)= &1\\ f(2)= &\\ f(3)= &\\ f(4)= &\\ f(5)= &\\
\end{array}$ $\begin{array}{lr}
f(6)= &\\ f(7)= &\\ f(8)= &\\ f(9)= &\\ f(10)= &\\
\end{array}$
Subclasses
[[Ordered fields]] expansion
Superclasses
[[Ordered rings]] supervariety
[[Commutative rings]] subreduct