## Commutative residuated lattice-ordered semigroups

Abbreviation: CRLSgrp

### Definition

A \emph{commutative residuated lattice-ordered semigroup} is a residuated lattice-ordered semigroup $\mathbf{A}=\langle A, \vee, \wedge, \cdot, \to\rangle$ such that

$\cdot$ is \emph{commutative}: $xy=yx$

Remark: This is a template. If you know something about this class, click on the Edit text of this page'' link at the bottom and fill out this page.

It is not unusual to give several (equivalent) definitions. Ideally, one of the definitions would give an irredundant axiomatization that does not refer to other classes.

##### Morphisms

Let $\mathbf{A}$ and $\mathbf{B}$ be commutative residuated lattice-ordered semigroups. A morphism from $\mathbf{A}$ to $\mathbf{B}$ is a function $h:A\rightarrow B$ that is a homomorphism: $h(x \vee y)=h(x) \vee h(y)$, $h(x \wedge y)=h(x) \wedge h(y)$, $h(x \cdot y)=h(x) \cdot h(y)$, and $h(x \to y)=h(x) \to h(y)$.

### Definition

A \emph{…} is a structure $\mathbf{A}=\langle A,\ldots\rangle$ of type $\langle …\rangle$ such that

$\ldots$ is …: $axiom$

$\ldots$ is …: $axiom$

Example 1:

### Properties

Feel free to add or delete properties from this list. The list below may contain properties that are not relevant to the class that is being described.

Classtype variety yes yes

### Finite members

$\begin{array}{lr} f(1)= &1\\ f(2)= &\\ f(3)= &\\ f(4)= &\\ f(5)= &\\ \end{array}$ $\begin{array}{lr} f(6)= &\\ f(7)= &\\ f(8)= &\\ f(9)= &\\ f(10)= &\\ \end{array}$

### Subclasses

[[Commutative distributive residuated lattice-ordered semigroups]] subvariety
[[Commutative residuated lattices]] expansion

### Superclasses

[[Residuated lattice-ordered semigroups]] supervariety
[[Commutative lattice-ordered semigroups]] subreduct