Medial groupoids

Definition

A \emph{medial groupoid} is a structure $\mathbf{G}=\langle G,\cdot\rangle$, where $\cdot$ is an infix binary operation such that

$\cdot$ mediates: $(x\cdot y)\cdot(z\cdot w)=(x\cdot z)\cdot (y\cdot w)$

Morphisms

Let $\mathbf{G}$ and $\mathbf{H}$ be medial groupoids. A morphism from $\mathbf{G}$ to $\mathbf{H}$ is a function $h:G\rightarrow H$ that is a homomorphism:

$h(xy)=h(x)h(y)$

Jaroslav Jezek, Tomas Kepka,\emph{Equational theories of medial groupoids}, Algebra Universalis, \textbf{17}1983,174–190MRreview

Jaroslav Jezek, Tomas Kepka,\emph{Medial groupoids}, Rozpravy Ceskoslovenske Akad. Ved Rada Mat. Prirod. Ved, \textbf{93}1983,93MRreview

Examples

Example 1: $\langle S,*\rangle$, where $\langle S,+,\cdot\rangle$ is any commutative semiring, $a,b\in S$, and $x*y=a\cdot x+b\cdot y$.

Properties

Classtype variety no unbounded no no no no no no

Finite members

$\begin{array}{lr} f(1)= &1 f(2)= & f(3)= & f(4)= & f(5)= & f(6)= & f(7)= & \end{array}$