Table of Contents
Quantales
Abbreviation: Quant
Definition
A \emph{quantale} is a structure $\mathbf{A}=\langle A, \bigvee, \cdot, 0\rangle$ of type $\langle\infty, 2, 0\rangle$ such that
$\langle A, \bigvee, 0\rangle$ is a complete semilattice with $0=\bigvee\emptyset$,
$\langle A, \cdot\rangle$ is a semigroup, and
$\cdot$ distributes over $\bigvee$: $(\bigvee X)\cdot y=\bigvee_{x\in X}(x\cdot y)$ and $y\cdot(\bigvee X)=\bigvee_{x\in X}(y\cdot x)$
Remark: In particular, $\cdot$ distributes over the empty join, so $x\cdot 0=0=0\cdot x$.
Morphisms
Let $\mathbf{A}$ and $\mathbf{B}$ be quantales. A morphism from $\mathbf{A}$ to $\mathbf{B}$ is a function $h:A\rightarrow B$ that is a homomorphism: $h(\bigvee X)=\bigvee h[X]$ for all $X\subseteq A$ (hence $h(0)=0$) and $h(x \cdot y)=h(x) \cdot h(y)$
Examples
Example 1:
Basic results
Properties
Feel free to add or delete properties from this list. The list below may contain properties that are not relevant to the class that is being described.
Finite members
$\begin{array}{lr}
f(1)= &1\\ f(2)= &2\\ f(3)= &12\\ f(4)= &129\\ f(5)= &1852\\ f(6)= &33391\\
\end{array}$
Model search done by Mace4 https://www.cs.unm.edu/~mccune/mace4/
Subclasses
[[...]] subvariety
[[...]] expansion
Superclasses
[[...]] supervariety
[[...]] subreduct