### Table of Contents

## Rectangular bands

Abbreviation: **RBand**

### Definition

A \emph{rectangular band} is a bands $\mathbf{B}=\langle B,\cdot \rangle $ such that

$\cdot $ is rectangular: $x\cdot y\cdot x=x$.

### Definition

A \emph{rectangular band} is a bands $\mathbf{B}=\langle B,\cdot \rangle $ such that

$x\cdot y\cdot z=x\cdot z$.

##### Morphisms

Let $\mathbf{B}$ and $\mathbf{C}$ be rectangular bands. A morphism from $\mathbf{B}$ to $\mathbf{C}$ is a function $h:B\rightarrow C$ that is a homomorphism:

$h(xy)=h(x)h(y)$

### Examples

### Basic results

### Properties

### Finite members

$\begin{array}{lr}
f(1)= &1

f(2)= &

f(3)= &

f(4)= &

f(5)= &

f(6)= &

f(7)= &

\end{array}$