Schroeder categories

Abbreviation: SchrCat

Definition

A \emph{Schroeder category} is an enriched category $\mathbf{C}=\langle C,\circ,\text{dom},\text{cod}\rangle$

in which every hom-set is a Boolean algebras.

Morphisms

Let $\mathbf{C}$ and $\mathbf{D}$ be Schroeder categories. A morphism from $\mathbf{C}$ to $\mathbf{D}$ is a function $h:C\rightarrow D$ that is a \emph{functor}: $h(x\circ y)=h(x)\circ h(y)$, $h(\text{dom}(x))=\text{dom}(h(x))$ and $h(\text{cod}(x))=\text{cod}(h(x))$.

Remark: These categories are also called \emph{groupoids}.

Examples

Example 1:

Basic results

Properties

Finite members

$\begin{array}{lr}

f(1)= &1\\
f(2)= &\\
f(3)= &\\
f(4)= &\\
f(5)= &\\
f(6)= &\\
f(7)= &\\
f(8)= &\\
f(9)= &\\
f(10)= &\\

\end{array}$

Subclasses

...

Superclasses

References


QR Code
QR Code schroeder_categories (generated for current page)