Table of Contents

FL-algebras

Abbreviation: FL

Definition

A \emph{full Lambek algebra}, or \emph{FL-algebra}, is a structure $\mathbf{A}=\langle A, \vee, \wedge, \cdot, 1, \backslash, /, 0\rangle$ of type $\langle 2,0,2,0,2,1,2,2\rangle$ such that

$\langle A, \vee, \wedge, \cdot, 1, \backslash, /\rangle$ is a residuated lattice and

$0$ is an additional constant (can denote any element).

Morphisms

Let $\mathbf{A}$ and $\mathbf{B}$ be FL-algebras. A morphism from $\mathbf{A}$ to $\mathbf{B}$ is a function $h:A\rightarrow B$ that is a homomorphism:

$h(x\vee y)=h(x)\vee h(y)$, $h(x\wedge y)=h(x)\wedge h(y)$, $h(x\cdot y)=h(x)\cdot h(y)$, $h(x\backslash y)=h(x)\backslash h(y)$, $h(x/y)=h(x)/h(y)$, $h(1)=1$, $h(0)=0$

Examples

Example 1:

Basic results

Properties

Finite members

$\begin{array}{lr} f(1)= &1
f(2)= &2
f(3)= &9
f(4)= &
f(5)= &
f(6)= &
\end{array}$

Subclasses

Bounded residuated lattices subvariety

FLe-algebras subvariety

FLw-algebras subvariety

FLc-algebras subvariety

Distributive FL-algebras subvariety

Superclasses

Residuated lattices reduct

References


1) Hiroakira Ono, Yuichi Komori, \emph{Logics without the contraction rule}, J. Symbolic Logic, \textbf{50}1985, 169–201 MRreview ZMATH implementation