Residuated lattices

Abbreviation: RL

Definition

A \emph{residuated lattice} is a structure $\mathbf{L}=\langle L, \vee, \wedge, \cdot, e, \backslash, /\rangle$ of type $\langle 2,2,2,0,2,2\rangle$ such that

$\langle L, \cdot, e\rangle$ is a monoid

$\langle L, \vee, \wedge\rangle$ is a lattice

$\backslash$ is the left residual of $\cdot$: $y\leq x\backslash z\Longleftrightarrow xy\leq z$

$/$ is the right residual of $\cdot$: $x\leq z/y\Longleftrightarrow xy\leq z$

Morphisms

Let $\mathbf{L}$ and $\mathbf{M}$ be residuated lattices. A morphism from $\mathbf{L}$ to $\mathbf{M}$ is a function $h:L\rightarrow M$ that is a homomorphism:

$h(x\vee y)=h(x)\vee h(y)$, $h(x\wedge y)=h(x)\wedge h(y)$, $h(x\cdot y)=h(x)\cdot h(y)$, $h(x\backslash y)=h(x)\backslash h(y)$, $h(x/y)=h(x)/h(y)$, $h(e)=e$

Examples

Example 1:

Basic results

Properties

Finite members

$\begin{array}{lr} f(1)= &1
f(2)= &1
f(3)= &3
f(4)= &20
f(5)= &149
f(6)= &1488
f(7)= &18554
f(8)= &295292
\end{array}$

Small residuated lattices

Subclasses

Superclasses

References

2)\end{document} %</pre>


1), 2) Hiroakira Ono, Yuichi Komori, \emph{Logics without the contraction rule}, J. Symbolic Logic, \textbf{50}, 1985, 169–201 MRreviewZMATH

QR Code
QR Code residuated_lattices (generated for current page)