Abbreviation: MV
An \emph{MV-algebra} (short for \emph{multivalued logic algebra}) is a structure $\mathbf{A}=\langle A, +, 0, \neg\rangle$ such that
$\langle A, +, 0\rangle$ is a commutative monoid
$\neg \neg x=x$
$x + \neg 0 = \neg 0$
$\neg(\neg x+y)+y = \neg(\neg y+x)+x$
Remark: This is the definition from 1)
Let $\mathbf{A}$ and $\mathbf{B}$ be MV-algebras. A morphism from $\mathbf{A} $ to $\mathbf{B}$ is a function $h:A\to B$ that is a homomorphism:
$h(x+y)=h(x)+h(y)$, $h(\neg x)=\neg h(x)$, $h(0)=0$
An \emph{MV-algebra} is a structure $\mathbf{A}=\langle A, +, 0, \cdot, 1, \neg\rangle$ such that
$\langle A, \cdot, 1\rangle$ is a commutative monoid
$\neg $ is a DeMorgan involution for $+,\cdot $: $\neg \neg x=x$, $x+y=\neg ( \neg x\cdot \neg y)$
$\neg 0=1$, $0\cdot x=0$, $\neg ( \neg x+y) +y=\neg ( \neg y+x) +x$
An \emph{MV-algebra} is a basic logic algebra $\mathbf{A}=\langle A,\vee,0,\wedge,1,\cdot,\to\rangle$ that satisfies
MV: $x\vee y=(x\to y)\to y$
A \emph{Wajsberg algebra} is an algebra $\mathbf{A}=\langle A, \to, \neg, 1\rangle$ such that
$1\to x=x$
$(x\to y)\to((y\to z)\to(x\to z) = 1$
$(x\to y)\to y = (y\to x)\to x$
$(\neg x\to\neg y)\to(y\to x)=1$
Remark: Wajsberg algebras are term-equivalent to MV-algebras via $x\to y=\neg x+y$, $1=\neg 0$ and $x + y=\neg x\to y$, $0=\neg 1$.
A \emph{bounded Wajsberg hoop} is an algebra $\mathbf{A}=\langle A, \cdot, \to, 0, 1\rangle$ such that
$\langle A, \cdot, \to, 1\rangle$ is a hoop
$(x\to y)\to y = (y\to x)\to x$
$0\to x=1$
Remark: Bounded Wajsberg hoops are term-equivalent to Wajsberg algebras via $x\cdot y=\neg(x\to\neg y)$, $0=\neg 1$, and $\neg x=x\to 0$. See 2) for details.
A \emph{lattice implication algebra} is an algebra $\mathbf{A}=\langle A, \to, -, 1\rangle$ such that
$x\to (y\to z) = y\to (x\to z)$
$1\to x = x$
$x\to 1 = 1$
$x\to y = {-}y\to {-}x$
$(x\to y)\to y = (y\to x)\to x$
Remark: Lattice implication algebras are term-equivalent to MV-algebras via $x + y = -x\to y$, $0 = -1$, and $\neg x= - x$.
A \emph{bounded commutative BCK-algebra} is an algebra $\mathbf{A}=\langle A,\cdot, 0, 1\rangle$ such that
$\langle A,\cdot,0\rangle$ is a commutative BCK-algebra and
$x\cdot 1 = 0$
Remark: Bounded commutative BCK-algebras are term-equivalent to MV-algebras via $\neg x=1\cdot x$, $x + y = y\cdot \neg x$, and switching the role of $0$, $1$.
Example 1:
Classtype | variety |
---|---|
Equational theory | decidable |
Universal theory | decidable (FEP3)) |
First-order theory | |
Locally finite | no |
Residual size | unbounded |
Congruence distributive | yes |
Congruence modular | yes |
Congruence n-permutable | yes, $n=2$ |
Congruence e-regular | yes, $e=1$ |
Congruence uniform | |
Congruence extension property | yes |
Definable principal congruences | |
Equationally def. pr. cong. | no |
Amalgamation property | yes 4) |
Strong amalgamation property | |
Epimorphisms are surjective |
$n$ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
# of algs | 1 | 1 | 1 | 2 | 1 | 2 | 1 | 3 | 2 | 2 | 1 | 4 | 1 | 2 | 2 | 5 | 1 | 4 | 1 | 4 | 2 | 2 | 1 | 7 | 2 |
# of si's | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
The number of algebras with $n$ elements is given by the number of ways of factoring $n$ into a product with nontrivial factors, see http://oeis.org/A001055