Table of Contents
Left neofileds
Abbreviation: LNfld
Definition
A \emph{left neofield} is a structure $\mathbf{F}=\langle F,+,\backslash,/,0,\cdot,1,^{-1}\rangle $ of type $\langle 2,2,2,0,2,0,1\rangle $ such that
$\langle F,+,\backslash,/,0\rangle $ is a loop
$\langle F-\{0\},\cdot,1,^{-1}\rangle$ is a group
$\cdot$ left-distributes over $+$: $x\cdot(y+z)=x\cdot y+x\cdot z$
Morphisms
Let $\mathbf{F}$ and $\mathbf{K}$ be left neofields. A morphism from $\mathbf{F}$ to $\mathbf{K}$ is a function $h:F\to K$ that is a homomorphism:
$h(x+y)=h(x)+h(y)$, $h(x\backslash y)=h(x)\backslash h(y)$, $h(x/y)=h(x)/h(y)$, $h(0)=0$, $h(x\cdot y)=h(x)\cdot h(y)$, $h(1)=1$
Examples
Example 1:
Basic results
Properties
Finite members
$\begin{array}{lr}
f(1)= &1
f(2)= &
f(3)= &
f(4)= &
f(5)= &
f(6)= &
\end{array}$
Subclasses
Superclasses
References
Keedwell, A.D., Construction, properties and applications of finite neofields, Comment. Math. Univ. Carolin. 41, 2 (2000) 283–297