−Table of Contents
Sqrt-quasi-MV-algebras
Abbreviation: sqMV
Definition
A √′\emph{quasi-MV-algebra}1) is a structure A=⟨A,⊕,√′,′,0,1,k⟩ such that √′ is a unary operation,
A=⟨A,⊕,′,0,1⟩ is a quasi-MV-algebra,
x′=√′√′x,
k′=k, and
√′(x⊕0)⊕0=k.
Morphisms
Let A and B be √′qMV-algebras. A morphism from A to B is a function h:A→B that is a homomorphism:
h(x⊕y)=h(x)⊕h(y), h(√′x)=√′h(x), h(0)=0, h(k)=k.
Examples
The standard √′qMV-algebra is Sr=⟨[0,1]2,⊕,√′,′,0,1,k⟩ where ⟨a,b⟩⊕⟨c,d⟩=⟨min(1,a+c),12⟩, √′⟨a,b⟩′=⟨b,1−a⟩, ⟨a,b⟩′=⟨1−a,1−b⟩, 0=⟨0,12⟩, 1=⟨1,12⟩ and k=⟨12,12⟩.
Basic results
The variety of √′qMV-algebras is generated by the standard √′qMV-algebra.
The operation ⊕ is commutative: x⊕y=y⊕x.
Only the trivial √′qMV-algebra is an MV-algebra.
Properties
Finite members
n | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
# of algs | 1 | 1 | 2 | 2 | 5 | 5 | 8 | 8 | 16 | 16 | 24 | 24 | |||||||||||||
# of si's | 0 | 1 | 1 | 0 | 2 | 0 | 0 |
Subclasses
Superclasses
References
1)
R. Giuntini, A. Ledda, F. Paoli,
\emph{Expanding quasi-MV algebras by a quantum operator},
Studia Logica, \textbf{87}, 2007, 99–128