A \emph{variety} is a class of structures of the same signature that is defined by a set of identities, i.e., universally quantified equations or, more generally, atomic formulas.
Varieties are also called \emph{equational classes}.
By a fundamental result of Birkhoff1) a class $\mathcal{K}$ of algebras is a variety iff it is closed under the operators $H$, $S$, $P$ (i.e., $H\mathcal{K}\subseteq\mathcal{K}$, $S\mathcal{K}\subseteq\mathcal{K}$, and $P\mathcal{K}\subseteq\mathcal{K}$), where
$H\mathcal{K}=\{$homomorphic images of members of $\mathcal{K}\}$
$S\mathcal{K}=\{$subalgebras of members of $\mathcal{K}\}$
$P\mathcal{K}=\{$direct products of members of $\mathcal{K}\}$.
Equivalently, $\mathcal K$ is a variety iff $\mathcal K=HSP\mathcal K$.
In particular, given any class $\mathcal K$ of algebras, $V\mathcal K=HSP\mathcal K$ is the smallest variety that contains $\mathcal K$, and is called the \emph{variety generated by $\mathcal K$}.
See Stanley N. Burris and H.P. Sankappanavar, A Course in Universal Algebra for more details.
Show all pages on varieties
A picture of some theories ordered by interpretability
Proper quasivarieties are marked by a *
$\langle \rangle$ Sets
$\langle 0\rangle$ Pointed sets
$\langle 1\rangle$ Mono-unary algebras
$\langle 1,0\rangle$ Pointed mono-unary algebras
$\langle 1,1\rangle$ Duo-unary algebras
$\langle 1,1,\ldots\rangle$ Unary algebras
$\langle 2\rangle$ Groupoids
$\langle 2,0\rangle$ Pointed groupoids
$\langle 2,1\rangle$ Groupoids with a unary operation
$\langle 2,1,0\rangle$ Pointed groupoids with a unary operation
$\langle 2,1,0,1,1,\ldots\rangle$ Pointed groupoids with a unary operations
$\langle 2,2\rangle$ Duo-groupoids
$\langle 2,2,0\rangle$ Pointed duo-groupoids
$\langle 2,2,1\rangle$
$\langle 2,2,\ldots\rangle$
$\langle 2,0,2,0\rangle$
$\langle 2,1,0,2\rangle$
$\langle 2,1,0,2,0\rangle$
$\langle 2,0,2,0,1\rangle$
$\langle 2,0,2,0,1,1\rangle$
$\langle 2,0,2,0,1,1\rangle$
$\langle 2,0,2,0,1,2\rangle$
$\langle 2,0,2,0,1,2,0\rangle$
$\langle 2,0,2,0,1,2,1,0\rangle$
$\langle 2,0,2,0,1,2,0,2,2\rangle$
$\langle 2,0,2,0,1,\ldots\rangle$
$\langle 2,0,2,0,\ldots\rangle$
$\langle 2,0,2,0,\ldots\rangle$
$\langle 2,2,2\rangle$
$\langle 2,2,2,0\rangle$
$\langle 2,2,2,1,0\rangle$
$\langle 2,2,2,0,2\rangle$
$\langle 2,2,2,0,2,2\rangle$
$\langle 2,0,2,0,2,2\rangle$
$\langle 2,0,2,0,2,0,2\rangle$
$\langle 2,0,2,0,2,0,2,2\rangle$
$\langle 2,0,2,0,1,2,2\rangle$
$\langle 2,2,0,2,0,1,2,2\rangle$